POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

COURSE DESCRIPTION CARD - SYLLABUS

Course	name
Technic	al mechanics

Course

Field of study	Year/Semester
Education in Technology and Informatics	1/2
Area of study (specialization)	Profile of study
	general academic
Level of study	Course offered in
First-cycle studies	Polish
Form of study	Requirements
full-time	compulsory

Number of hours

Lecture	Laboratory classes	Other (e.g. online)
20		
Tutorials	Projects/seminars	
15		
Number of credit points		
3		

Lecturers

Responsible for the course/lecturer: PhD Eng Mikołaj Bilski email: mikolaj.bilski@put.poznan.pl Faculty of Mechanical Engineering CMBiN, room 435 Responsible for the course/lecturer:

Prerequisites

Basic knowledge of physics and mathematics, vector calculus, calculus

Course objective

Providing students with basic knowledge of engineering mechanics, in the field of statics, kinematics and dynamics, which will enable them to study further subjects

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Course-related learning outcomes

Knowledge

Student has knowledge in physics, covering the basics of classical mechanics, necessary to understand issues in the field of materials science, theory of machines and mechanisms, theory of drives and mechatronic systems,

has basic knowledge of the main areas of technical mechanics: statics, kinematics and dynamics of the material point and rigid body.

Skills

Student has the ability to self-study using modern teaching tools, such as remote lectures, websites, databases, e-books, etc.

is able to obtain information from literature, the internet, databases and other sources, is able to integrate obtained information, interpret and draw conclusions from it

can create a free-body diagram, select elements and perform basic calculations of the mechanical system.

Social competences

Student is able to properly set priorities for implementation of the task specified by himself or others based on available knowledge,

understands the need for critical assessment of knowledge and continuous education

is aware of the importance and understands the non-technical aspects and effects of engineering activities, including its impact on the environment, and the associated responsibility for decisions made.

Methods for verifying learning outcomes and assessment criteria

Learning outcomes presented above are verified as follows:

Lecture: written test verifying proper understanding of the concepts of engineering mechanics

Tutorials: tests and assessment of classroom activity

Programme content

Elements of vector algebra. Statics including: axioms of statics, theorem of three forces, equilibrium equations for various force systems (concurrent, parallel, any 2D and 3D), moment of force, resultant of two parallel forces, pair of forces, reduction of any set of loading, change of the reduction pole, invariants of the reduction, concentrated and distributed loads, trusses, frames, friction, belt friction, center of gravity.

Kinematics including: kinematics of point, velocity, acceleration, description of motion in the absolute coordinate system (Cartesian and polar) and in the natural coordinate system, tangent and normal acceleration, kinematics of a rigid body, various kinds of motion (translation, rotation, planar).

Teaching methods

POZNAN UNIVERSITY OF TECHNOLOGY

EUROPEAN CREDIT TRANSFER AND ACCUMULATION SYSTEM (ECTS) pl. M. Skłodowskiej-Curie 5, 60-965 Poznań

Lecture: multimedia presentation illustrated by the examples given on the blackboard

Tutorial: solving of the mechanical problems on the blackboard, discussion

Bibliography

Basic

1. J. Leyko, Mechanika ogólna, t. 1 i 2, PWN, Warszawa, 2000

- 2. M. Lunc, A. Szaniawski, Zarys mechaniki ogólnej, PNW, Warszawa, 1959
- 3. M.E.Niezgodziński, T.Niezgodziński, Zbiór zadań z mechaniki ogólnej, PWN, Warszawa, 1998
- 5. J. Misiak, Zadania z mechaniki ogólnej, t. 1, 2 i 3, WNT, Warszawa, 1992
- 6. J. Nizioł; Metodyka rozwiązywania zadań z mechaniki, WNT, Warszawa, 2002
- 7. W. Biały, Metodyczny zbiór zadań z mechaniki, WNT, Warszawa, 2004

Additional

- 1. A.Bedford, W.Fowler, Engineering Mechanics, Prentice Hall, 2002
- 2. R.C.Hibbeler, Engineering mechanics, PEARSON, 20133.
- 3. J.Awrejcewicz, Mechanika techniczna, Warszawa WNT 2009

Breakdown of average student's workload

	Hours	ECTS
Total workload	75	3,0
Classes requiring direct contact with the teacher	45	2,0
Student's own work (literature studies, preparation for	30	1,0
laboratory classes/tutorials, preparation for tests/exam, project		
preparation) ¹		

¹ delete or add other activities as appropriate